Decision Optimization for Power Grid Operating Condition with High and Low Voltage Parallel Loops
نویسندگان
چکیده
With the development of higher voltage power grid, the high and low voltage parallel loops are emerging, which lead to energy losses, even threaten the security and stability of power system. The multi-infeed HVDC configurations widely appearing in AC/DC interconnected power system make this situation even worse. Aimed at energy saving and system security, a decision optimization method for power grid operating condition with high and low voltage parallel loops is proposed in this paper. Firstly, considering hub substation distribution and power grid structure, parallel loop opening schemes are generated with GN algorithm. Then, candidate opening schemes are preliminarily selected from all these generated schemes based on a filtering index. Finally, with the influence on power system security, stability and operation economy in consideration, an evaluation model for candidate opening schemes is founded based on analytic hierarchy process (AHP). And a fuzzy evaluation algorithm is used to find the optimal scheme. Simulation results of New England 39-bus system and an actual power system validate the effectiveness and superiority of this proposed method.
منابع مشابه
Reactive Power Sharing and Harmonic Voltage Modification in Single Phase Island Micro-Grid with Drop Control
Abstract: When several parallel inverters are in islands operating mode, the droop control scheme is usually used to control the inverters. The droop control method enables the inverters of a Micro-Grid to control the voltage and frequency of the network in a decentralized regulation behavior. The drop control method also enables the inverters to share the required active and reactive powers of...
متن کاملReactive and Active Power Control of Grid WECS Based on DFIG and Energy Storage System under both Balanced and Unbalanced Grid Conditions
This paper focuses on improving the active and reactive power control of Wind Energy Conversion System (WECS) by employing the Battery Energy Storage System (BESS) and controlling the frequency and voltage regulation instantaneously. The proposed power control scheme is composed of two control loops so that they are implemented and designed for active power control and controlling the reactive ...
متن کاملLow Voltage Ride Through Enhancement Based on Improved Direct Power Control of DFIG under Unbalanced and Harmonically Distorted Grid Voltage
In the conventional structure of the wind turbines along with the doubly-fed induction generator (DFIG), the stator is directly connected to the power grid. Therefore, voltage changes in the grid result in severe transient conditions in the stator and rotor. In cases where the changes are severe, the generator will be disconnected from the grid and consequently the grid stability will be attenu...
متن کاملEfficient low-voltage ride-through nonlinear backstepping control strategy for PMSG-based wind turbine during the grid faults
This paper presents a new nonlinear backstepping controller for a direct-driven permanent magnet synchronous generator-based wind turbine, which is connected to the power system via back-to-back converters. The proposed controller deals with maximum power point tracking (MPPT) in normal condition and enhances the low-voltage ride-through (LVRT) capability in fault conditions. In this method, to...
متن کاملFuzzy-Decision-Making Predictive Power Control Approach to On-Grid Photovoltaic Panel
In this paper, a voltage-current mode controller is proposed to adjust both the input current and DC voltage of a boost-inverter in order to improve the performance of the photovoltaic (PV). The proposed system is based on fuzzy-making-decision predictive voltage-current controller (FPVCC). The simulation results show that in case of using the proposed FPVCC, the input current of a PV array is ...
متن کامل